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ABSTRACT

The existence of a giant planet beyond Neptune – referred to as Planet Nine (P9)
– has been inferred from the clustering of longitude of perihelion and pole position of
distant eccentric Kuiper belt objects (KBOs). After updating calculations of observa-
tional biases, we find that the clustering remains significant at the 99.6% confidence
level. We thus use these observations to determine orbital elements of P9. A suite
of numerical simulations shows that the orbital distribution of the distant KBOs is
strongly influenced by the mass and orbital elements of P9 and thus can be used to
infer these parameters. Combining the biases with these numerical simulations, we cal-
culate likelihood values for discrete set of P9 parameters, which we then use as input
into a Gaussian Process emulator that allows a likelihood computation for arbitrary
values of all parameters. We use this emulator in a Markov Chain Monte Carlo analysis
to estimate parameters of P9. We find a P9 mass of 6.2+2.2

−1.3 Earth masses, semimajor
axis of 380+140

−80 AU, inclination of 16 ± 5◦ and perihelion of 300+85
−60 AU. Using samples

of the orbital elements and estimates of the radius and albedo of such a planet, we cal-
culate the probability distribution function of the on-sky position of Planet Nine and
of its brightness. For many reasonable assumptions, Planet Nine is closer and brighter
than initially expected, though the probability distribution includes a long tail to larger
distances, and uncertainties in the radius and albedo of Planet Nine could yield fainter
objects.

1. INTRODUCTION

Hints of the possibility of a massive planet well
beyond the orbit of Neptune have been emerg-
ing for nearly twenty years. The first clues came
from the discovery of a population of distant ec-
centric Kuiper belt objects (KBOs) decoupled
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from interactions with Neptune (Gladman et al.
2002; Emel’yanenko et al. 2003; Gomes et al.
2006), suggesting some sort of additional grav-
itational perturbation. While the first such de-
coupled objects were only marginally removed
from Neptune’s influence and suggestions were
later made that chaotic diffusion could create
similar orbits (Bannister et al. 2017), the dis-
covery of Sedna, with a perihelion far removed
from Neptune, clearly required the presence of
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a past or current external perturber (Brown
et al. 2004). Though the orbit of Sedna was
widely believed to be the product of pertur-
bation by passing stars within the solar birth
cluster (Morbidelli & Levison 2004; Schwamb
et al. 2010; Brasser et al. 2012), the possibility of
an external planetary perturber was also noted
(Brown et al. 2004; Morbidelli & Levison 2004;
Gomes et al. 2006). More recently, Gomes et al.
(2015) examined the distribution of objects with
very large semimajor axes but with perihelia in-
side of the planetary regime and concluded that
their overabundance can best be explained by
the presence of an external planet of mass ∼10
Me (where Me is the mass of the Earth) at a
distance of approximately 1000 AU. Simultane-
ously, Trujillo & Sheppard (2014) noted that
distant eccentric KBOs with semimajor axis
a > 150 AU all appeared to come to perihelion
approximately at the ecliptic and always travel-
ling from north-to-south (that is, the argument
of perihelion, ω, is clustered around zero), a sit-
uation that they speculated could be caused by
Kozai interactions with a giant planet, though
detailed modeling found no planetary configu-
ration that could explain the observations.

These disparate observations were finally uni-
fied with the realization by Batygin & Brown
(2016) that distant eccentric KBOs which are
not under the gravitational influence of Nep-
tune are largely clustered in longitude of peri-
helion, meaning that their orbital axes are ap-
proximately aligned, and simultaneously clus-
tered in the orbital plane, meaning that their
angular momentum vectors are approximately
aligned (that is, they share similar values of in-
clination, i, and longitude of ascending node,
Ω). Such a clustering is most simply explained
by a giant planet on an inclined eccentric or-
bit with its perihelion location approximately
180 degrees removed from those of the clus-
tered KBOs. Such a giant planet would not
only explain the alignment of the axes and or-

bital planes of the distant KBOs, but it would
also naturally explain the large perihelion dis-
tances of objects like Sedna, the overabundance
of large semimajor axis low perihelion objects,
the existence of a population of objects with
orbits perpendicular to the ecliptic, and the ap-
parent trend for distant KBOs to cluster about
ω = 0 (the clustering near ω = 0 is a coin-
cidental consequence of the fact that objects
sharing the same orbital alignment and orbital
plane will naturally come to perihelion at ap-
proximately the same place in their orbit and,
in the current configuration of the outer solar
system, this location is approximately centered
at ω ∼ −40◦). The hypothesis that a giant
planet on an inclined eccentric orbit keeps the
axes and planes of distant KBOs aligned was
called the Planet Nine hypothesis.

With one of the key lines of evidence for
Planet Nine being the orbital clustering, much
emphasis has been placed on trying to assess
whether or not such clustering is statistically
significant or could be a product of observa-
tional bias. In analyses of all available contem-
porary data and their biases, Brown (2017) and
Brown & Batygin (2019, hereafter BB19) find
only a 0.2% chance that the orbits of the dis-
tant Kuiper belt objects (KBOs) are consistent
with a uniform distribution of objects. Thus the
initial indications of clustering from the origi-
nal analysis appear robust when an expanded
data set that includes observations taken over
widely dispersed areas of the sky are considered.
In contrast, Shankman et al. (2017), Bernar-
dinelli et al. (2020), and Napier et al. (2021)
using more limited – and much more biased –
data sets, were unable to distinguish between
clustering and a uniform population. Such dis-
crepant results are not surprising: BB19 showed
that the data from the highly biased OSSOS
survey, which only examined the sky in two dis-
tinct directions, do not have the sensitivity to
detect the clustering already measured for the
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full data set. Bernardinelli et al. (2020) recog-
nize that the sensitivity limitations of the even-
more-biased DES survey, which only examined
the sky in a single direction, precluded them
from being able to constrain clustering. It ap-
pears that Napier et al., whose data set is dom-
inated by the combination of the highly-biased
OSSOS and DES surveys, suffers from similar
lack of sensitivity, though Napier et al. do not
provide sensitivity calculations that would allow
this conclusion to be confirmed. Below, we up-
date the calculations of BB19 and demonstrate
that the additional data now available contin-
ues to support the statistical significance of the
clustering. We thus continue to suggest that
the Planet Nine hypothesis remains the most
viable explanation for the variety of anomolous
behaviour seen in the outer solar system, and we
work towards determining orbital parameters of
Planet Nine.

Shortly after the introduction of the Planet
Nine hypothesis, attempts were made to con-
strain various of the orbital elements of the
planet. Brown & Batygin (2016) compared the
observations to some early simulations of the ef-
fects of Planet Nine on the outer solar system
and showed that the data were consistent with a
Planet Nine with a mass between 5 and 20 Earth
masses, a semimajor axis between 380 and 980
AU, and a perihelion distance between 150 and
350 AU. Others sought to use the possibility
that the observed objects were in resonances to
determine parameters (Malhotra et al. 2016),
though Bailey et al. (2018) eventually showed
that this route is not feasible. Millholland &
Laughlin (2017) invoked simple metrics to com-
pare simulations and observations, and Batygin
et al. (2019) developed a series of heuristic met-
rics to compare to a large suite of simulations
and provided the best constraints on the orbital
elements of Planet Nine to date.

Two problems plague all of these attempts at
deriving parameters of Planet Nine. First, the

metrics used to compare models and observa-
tions, while potentially useful in a general sense,
are ad hoc and difficult to justify statistically.
As importantly, none of these previous meth-
ods has attempted to take into account the ob-
servational biases of the data. While we will
demonstrate here that the clustering of orbital
parameters in the distant Kuiper belt is un-
likely a product of observational bias, observa-
tional bias does affect the orbital distribution
of distant KBOs which have been discovered.
Ignoring these effects can potentially bias any
attempts to discern orbital properties of Planet
Nine.

Here, we perform the first rigorous statisti-
cal assessment of the orbital elements of Planet
Nine. We use a large suite of Planet Nine sim-
ulations, the observed orbital elements of the
distant Kuiper belt, as well as the observa-
tional biases in their discoveries, to develop a
detailed likelihood model to compare the obser-
vations and simulations. Combining the likeli-
hood models from all of the simulations, we cal-
culate probability density functions for all or-
bital parameters as well as their correlations,
providing a map to aid in the search for Planet
Nine.

2. DATA SELECTION

The existence of a massive, inclined, and ec-
centric planet beyond ∼250 AU has been shown
to be able to cause multiple dynamical effects,
notably including a clustering of longitude of
perihelion, $, and of pole position (a combi-
nation of longitude of ascending node, Ω, and
inclination, i) for distant eccentric KBOs. Criti-
cally, this clustering is only strong in sufficiently
distant objects whose orbits are not strongly af-
fected by interactions with Neptune (Batygin &
Brown 2016; Batygin et al. 2019). Objects with
perihelia closer to the semimajor axis of Nep-
tune, in what is sometimes referred to as the
“scattering disk,” for example, have the strong
clustering effects of Planet Nine disrupted and
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are more uniformly situated (i.e. Lawler et al.
2017). In order to not dilute the effects of
Planet Nine with random scattering caused by
Neptune, we thus follow the original formula-
tion of the Planet Nine hypothesis and restrict
our analysis to only the population not inter-
acting with Neptune. In Batygin et al. (2019)
we use numerical integration to examine the or-
bital history of each known distant object and
classify them as stable, meta-stable, or unsta-
ble, based on the speed of their semimajor axis
diffusion. In that analysis, all objects with
q < 42 AU are unstable with respect to peri-
helion diffusion, while all objects with q > 42
AU are stable or meta-stable. Interestingly, 11
of the 12 known KBOs with a > 150 AU and
q > 42 AU have longitude of perihelion clus-
tered between 7 < $ < 118◦, while only 8 of 21
with 30 < q < 42 AU are clustered in this re-
gion, consistent with the expectations from the
Planet Nine hypothesis. We thus settle on se-
lecting all objects at a > 150 AU with perihe-
lion distance, q > 42 AU for analysis for both
the data and for the simulations below.

A second phenomenon could also dilute the
clustering caused by Planet Nine. Objects
which are scattered inward from the inner Oort
cloud also appear less clustered than the longer-
term stable objects (Batygin & Brown 2021).
These objects are more difficult to exclude with
a simple metric than the Neptune-scattered ob-
jects, though excluding objects with extreme
semimajor axes could be a profitable approach.
Adopting our philosophy from the previous sec-
tion, we exclude the one known object in the
sample with a > 1000 AU as possible contam-
ination from the inner Oort cloud. While we
again cannot know for sure if this object is in-
deed from the inner Oort cloud, removing the
object can only have the effect of decreasing our
sample size and thus increasing the uncertain-
ties in our final orbit determination, for the po-

Table 1. Orbital elements of all reported ob-
jects with 150 < a < 1000 and q > 42 AU.

name a e i Ω $

AU deg. deg. deg.

2000CR105 218 0.80 22.8 128.3 85.0

2003VB12 479 0.84 11.9 144.3 95.8

2004VN112 319 0.85 25.6 66.0 32.8

2010GB174 351 0.86 21.6 130.8 118.2

2012VP113 258 0.69 24.1 90.7 24.2

2013FT28 312 0.86 17.3 217.8 258.3

2013RA109 458 0.90 12.4 104.7 7.5

2013SY99 694 0.93 4.2 29.5 61.6

2013UT15 197 0.78 10.7 192.0 84.1

2014SR349 302 0.84 18.0 34.8 15.7

2015RX245 412 0.89 12.1 8.6 73.7

Note—As of 20 August 2021.

tential gain of decreasing any biases in our final
results.

The sample with which we will compare our
observations thus includes all known multi-
opposition KBOs with 150 < a < 1000 AU and
q > 42 AU reported as of 20 August 2021. Even
after half of a decade of intensive search for dis-
tant objects in the Kuiper belt, only 11 fit this
stringent criteria for comparison with models.
The observed orbital elements of these 11 are
shown in Table 1. These objects are strongly
clustered in $ and pole position, though obser-
vational biases certainly can affect this observed
clustering.

3. BIAS

All telescopic surveys contain observational
biases. Correctly understanding and imple-
menting these biases into our modeling is crit-
ical to correctly using the observations to ex-
tract orbital parameters of Planet Nine. BB19
developed a method to use the ensemble of all
known KBO detections to estimate a full geo-
metric observational bias for individual distant
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Figure 1. Semimajor axes versus $ for the 11 KBOs of our sample (green points). The points are plotted
as ∆$, defined as $ − $9, where here we plot the points for an assumed value of $9 = 254◦. For each
known distant KBO we show a one-dimensional projection of the bias with respect to $ (blue). While
consistent bias exists, the $ cluster is approximately 90◦ removed from the direction of bias. We also
show the probability density of $ versus semimajor axis in the maximum likelihood model with m9 = 5
Me, a9 = 300 AU, e9 = 0.15 and i9 = 16◦ (red). The density plot is normalized at every semimajor axis
to better show the longitudinal structure. Note that this comparison is simply for visualization; the full
maximum-likelihood model compares the full set of orbit elements of each object to the simulations and also
incorporates the observational biases on each observed objects.

KBOs. For each of the distant KBOs, they cre-
ate the function

B
(a,e,H)j
j [(i, $,Ω)|U ], (1)

where, for our case, j represents one of the 11
distant KBOs of the sample and B

(a,e,H)j
j is the

probability that distant KBO j, with semima-
jor axis, eccentricity, and absolute magnitude
(a, e,H)j would be detected with orbital angles
i, $, and Ω, if the population were uniformly
distributed in the sky, given U , the ensemble of
all known KBO detections. The details of the
method are explained in BB19, but, in short, it
relies on the insight that every detection of ev-

ery KBO can be thought of (with appropriate
caveats) as an observation at that position in
the sky that could have detected an equivalent
object j with (a, e,H)j if, given the required or-
bital angles (i, $,Ω) to put object j at that po-
sition in the sky, the object would be predicted
to be as bright as or brighter at that sky position
than the detected KBO. For each sample object
j with (a, e,H)j, the ensemble of all KBO de-
tections can thus be used to estimate all of the
orbital angles at which the object could have
been detected. This collection of orbital angles
at which an object with (a, e,H)j could have
been detected represents the bias in (i, $,Ω)
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Figure 2. A comparison of the projection of the pole position of the distant detached KBOs (the green
points show (sin i cos ∆Ω, sin i sin ∆Ω), where ∆Ω is the difference between the longitude of ascending node
of the observed object and of the modeled Planet Nine, assumed to be 108◦ here) and a density plot of their
expected values in the maximum likelihood model (red background). In blue we show an average of the
two-dimensional projection of the pole position bias of all of the objects. While strong bias in pole position
exists, no preferential direction is apparent. White circles indicate 30 and 60 degree inclinations.

for object j. While biases calculated with this
method are strictly discrete, we smooth to one
degree resolution in all parameters for later ap-
plication to our dynamical simulations.

Note that this method differs from bias calcu-
lations using full survey simulators. It does not
rely on knowledge of the survey details of the
detections, but rather just the fact of the de-
tection itself. Comparison of these bias calcula-
tions with the bias calculated from a full survey

similar for the OSSOS survey shows comparable
results (BB19).

Of the objects in our sample, all were included
in the BB19 calculations with the exception of
2013 RA109, which had not been announced at
the time of the original publication. We repro-
duce the algorithm of BB19 to calculate a bias
probability function for this object.

While the bias is a separate 3-dimensional
function for each object, we attempt to give
an approximate visual representation of these
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biases in Figure 1, which collapses the bias of
each object in $ into a single dimension. As
can be seen, a strong observational bias in $
exists, but the observed clustering is approxi-
mately 90◦ removed from the position of this
bias. Figure 2 shows the bias in pole position.
While, again, each object has an individual bias,
the pole position biases are sufficiently similar
that we simply show the sum of all of the biases,
collapsed to two dimensions. Strong pole posi-
tion biases exist, but none which appear capable
of preferentially biasing the pole in any partic-
ular direction.

With the bias function now available, we re-
examine the statistical significance of the an-
gular clustering of the distant KBOs by up-
dating the analysis of BB19 for the objects in
our current analysis set. As in that analysis,
we perform 106 iterations where we randomly
chose (i, $,Ω) for the 11 objects of our sam-
ple assuming uniform distributions in $ and
Ω and a sin i exp(−i2/2σ2) distribution with
σ = 16◦ for i, and project these to the four-
dimensional space of the canonical Poincaré
variables (x, y, p, q), corresponding roughly to
longitude of perihelion (x, y) and pole position
(p, q) (see BB19 for details). For each of the iter-
ations we compute the average four-dimensional
position of the 11 simulated sample objects and
note whether or not this average position is
more distant than the average position of the
real sample. This analysis finds that the real
data are more extreme than 99.6% of the simu-
lated data, suggesting only a 0.4% chance that
these data are selected from a random sample.
Examination of Figures 1 and 2 give a good vi-
sual impression of why this probability is so low.
The data are distributed very differently from
the overall bias, contrary to expectations for a
uniform sample.

The significance of the clustering retrieved
here is slightly worse than that calculated by
BB19. While one new distant object has been

added to the sample, the main reason for the
change in the significance is that, after the Baty-
gin et al. (2019) analysis, we now understand
much better which objects should most be ex-
pected to be clustered by Planet Nine, thus our
total number of objects in our sample is smaller.
Though this smaller sample leads to a slightly
lower clustering significance, we nonetheless rec-
ommend the choice of 150 < a < 1000 AU and
q > 42 AU for any analyses going forward in-
cluding newly discovered objects.

With the reassurance that the clustering is in-
deed robust, we now turn to using the biases to
help determine the orbital parameters of Planet
Nine.

4. PLANET NINE ORBITAL PARAMETER
ESTIMATION

To estimate orbital parameters of Planet Nine,
we require a likelihood model for a set of orbital
parameters given the data on the observed dis-
tant KBOs. In practice, because of the struc-
ture of our bias calculations, which only account
for on-sky geometric biases and do not attempt
to explore biases in semimajor axis or perihe-
lion, we reformulate this likelihood to be that
of finding the observed value of (i, $,Ω)j given
the specific value of (a, e)j for each distant ob-
ject j. Conceptually, this can be thought of as
calculating the probability that an object with
a measured value of a and a measured value of
q would be found to have the measured values
of i, $, and Ω for a given set of Planet Nine
orbital parameters.

The random variables for this model are the
mass of the planet, m9, the semimajor axis, a9,
the eccentricity, e9, the inclination, i9, the lon-
gitude of perihelion, $9, and the longitude of
ascending node, Ω9. As the effects of Planet
Nine are now understood to be mainly secular
(Beust 2016), the position of Planet Nine within
its orbit (the mean anomaly, M9) does not af-
fect the outcome, so it is unused. We thus write
the likelihood function of the jth KBO in our
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data set as:

L(a,e)j
j [(m9, a9, e9, i9, $9,Ω9)|(i, $,Ω)j], (2)

where the (a, e)j superscript refers to the fixed
value of a and e for object j. The full likelihood,
LP9 is the product of the individual object like-
lihoods. The likelihood of observing (i, $,Ω)j
given a set of Planet Nine parameters depends
on both the physics of Planet Nine and the ob-
servational biases.

4.1. Simulations

While LP9 is presumably a continuous func-
tion of the orbital parameters, we must calculate
the value at discrete locations using numerical
simulations. We perform 121 of these simula-
tions at manually chosen values of m9, a9, e9,
and i9, as detailed below. The two angular pa-
rameters, $9 and Ω9, yield results that are rota-
tionally symmetric so we need not individually
simulate these results but rather rotate our ref-
erence frame to vary these parameters later. We
set M9 = 0 for the starting position of all sim-
ulations as this parameters does not affect the
final orbital distributions.

To save computational time, previous Planet
Nine simulations have often included only the
effects of Neptune plus a J2 term to simulate
the combined orbit-averaged torque of the three
inner gas giants. While this approach captures
the relevant processes at the qualitative level,
here, as we are interested in a detailed com-
parison with observations, we fully include all
four inner giant planets. For each independent
simulation a set of between 16,800 and 64,900
test particles is initially distributed with semi-
major axis between 150 and 500 AU, perihelion
between 30 and 50 AU, inclination between 0
and 25◦, and all other orbital angles randomly
distributed. The orbits of the 5 giant planets
and test particles are integrated using the mer-
cury6 gravitational dynamics software package
(Chambers 1999). To carry out the integrations

we used the hybrid symplectic/Bulirsch-Stoer
algorithm of the package, using a time step of
300 days which is adaptively reduced to directly
resolve close encounters. Objects that collide
with planets or reach r < 4.5 or r > 10000
AU are removed from the simulation for con-
venience. The orbital elements of all objects
are defined in a plane in which the angles are
referenced to the initial plane of the four inte-
rior giant planets. As Planet Nine precesses the
plane of the planets, however, the fixed refer-
ence coordinate system no longer corresponds
to the plane of the planets. Thus, after the sim-
ulations are completed, we recompute the time
series of ecliptic-referenced angles by simply ro-
tating to a coordinate system aligned with the
orbital pole of Jupiter. In this rotation we keep
the longitude zero-point fixed so that nodal pre-
cession of test particles and Planet Nine can be
tracked.

A total of 121 simulations was performed,
varying the mass (m9), semimajor axis (a9), ec-
centricity (e9), and inclination (i9). Parame-
ters for Planet Nine were chosen by hand in an
attempt to explore a wide range of parameter
space and find the region of maximum likeli-
hood. The full set of parameters explored can
be seen in Table 2. Examination of the initial
results from these simulations confirms the con-
clusions of Batygin et al. (2019): varying the or-
bital parameters of Planet Nine produces large
effects on the distant Kuiper belt (Fig. 3). We
see, for example, that fixing all parameters but
increasing m9 smoothly narrows the spread of
the distant cluster (the feature labeled “clus-
ter width” in Figure 3). Increasing i9 smoothly
moves the orbital plane of the clustered objects
to follow the orbital plane of Planet Nine, until,
at a values above i9 > 30◦, the increased incli-
nation of Planet Nine tends to break the cluster-
ing entirely (Figure 4). Increasing m9 also leads
to a decrease in the distance to the transition
between unclustered and clustered objects (the
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feature labeled the “wall” in Figure 3), while in-
creasing the perihelion distance of Planet Nine
(q9) increases the distance to the wall. Many
other more subtle effects can be seen in the
full data set. While we point out all of these
phenomena, our point is not to parameterize or
make use of any of them, but rather to make the
simple case that the specific orbital parameters
of Planet Nine cause measurable effects on the
distributions of objects in the distant Kuiper
belt. Thus, we should be able to use the mea-
sured distributions to extract information about
the orbital parameters of Planet Nine. We will
accomplish this task through our full likelihood
model.

4.2. Kernel density estimation

Each numerical simulation contains snapshots
of the orbital distribution of the outer solar sys-
tem for a finite number of particles. We use ker-
nel density estimation to estimate a continuous
function for the probability distribution func-
tion (PDF) from these discrete results of each
simulation, that is, we seek the probability of
observing an object at (i, $,Ω)j given (a, e)j for
each simulation. The early times of the simu-
lations contain a transient state that appears
to reach something like a steady-state in orbital
distribution after ∼ 1 Gyr. We thus discard
these initial time steps and only include the fi-
nal 3 Gyr in our analysis. In all simulations
the number of surviving objects continues to de-
crease with time, with a wide range in variation
of the ejection rate that depends most strongly
on P9 mass and perihelion distance.

For each numerical model, k, and each ob-
served KBO, j, we repeat the following steps.
First, we collect all modeled objects that pass
within a defined smoothing range of aj and qj,
the parameters of the observed KBO. Because of
our finite number of particles, smoothing is re-
quired to overcome the shot noise which would
otherwise dominate the results. Based on our
observation that the behaviour of the modeled

KBOs changes rapidly with changing semima-
jor axis around the transition region (we do not
know this transition region a priori but it is
within 200-400 AU in all the simulations; see
Figures 1 and 3, for example) but changes little
at large semimajor axes, we define the smooth-
ing range in a as a constant value of 5% for
aj < 230 AU, but, because the number of par-
ticles in the simulations declines with increas-
ing semimajor axis, we allow the smoothing dis-
tance to linearly rise to 30% by aj = 730 AU.
For perihelia beyond 42 AU, we observe little
change in behaviour as a function of q, so we
define a simple smoothing length of qj ± 10 AU
with a lower limit of 42 AU (which is the limit
we imposed on the observed KBOs). The main
effect of these two smoothing parameters will
be to slightly soften the sharp transition region
(“the wall”) which, in practice, will contribute
to the uncertainties in our derived mass, eccen-
tricity, and, semimajor axis.

We select all of the modeled KBOs at times af-
ter the initial Gyr of simulation that pass within
these a and q limits at any time step, and we
weight them with two Gaussian kernels, each
with a σ equal to half of the smoothing distances
defined above. The selected objects now all con-
tain similar semimajor axis and perihelion dis-
tance as the jth observed KBO, and their nor-
malized distribution gives the probability that
such an observed KBO would have a given in-
clination, longitude of perihelion, and longitude
of ascending node. At this point the simulated
values of $ and Ω are all relative to $9 and
Ω9, rather than in an absolute coordinate sys-
tem. We refer to these relative values as ∆$
and ∆Ω.

We create the three-dimension probability dis-
tribution function of (i,∆$,∆Ω) by select-
ing a value of ∆$ and then constructing a
probability-distribution function of the pole po-
sition (sin i cos Ω, sin i sin Ω), again using kernel
density estimation now using a Gaussian ker-
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Figure 3. Probability density of a versus ∆$ for a variety of simulated Planets Nine, in the same format
as Fig.1. At the lowest masses the cluster appears double-peaked as the clustered objects librate and spend
greater amounts of time at their inflection points. The dashed line labeled ”wall” shows the transition
between the nearby uniform population and the more distant clustered population. This transition distance
decrease with increasing m9 and decreasing a9 and q9. The width of the cluster decreases with increasing
m9. Systematic changes such as these demonstrate that the orbital distribution of the distant KBOs is
strongly influenced by the orbital parameters of Planet Nine.
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Figure 4. The probability distribution of the pole positions of KBOs with a > 150 AU and q > 42 AU
for four Planet Nine models. All models have m9 = 7 Mearth, a9 = 500 AU, and e9 = 0.33 and the effect
of changing i9 can be seen. The green dot shows the pole position of Planet Nine in the simulations. The
white circle show 30 and 60◦ inclinations. For small inclinations the distant KBOs track the inclination of
Planet Nine. As i9 increases, however, the overall longitudinal clustering diminishes and the pole positions
cluster less tightly around that of Planet Nine.
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nel with σ = 2◦ in great-circle distance from
the pole position and σ = 10◦ in longitudinal
distance from ∆$ and multiplying by the a, q
weighting from above. In practice we grid our
pole position distribution as a HEALPIX1 map
(with NSIDE=32, for an approximately 1.8 de-
gree resolution) and we calculate separate pole
position distributions for each value of ∆$ at
one degree spacings. This three-dimensional
function is the probability that an unbiased sur-
vey that found a KBO with aj and qj would have
found that object with (i,∆$,∆Ω)j in the kth

simulation, or

P
(a,e)j
j,k [(i,∆$,∆Ω)j|(m9, a9, e9, i9)k]. (3)

For arbitrary values of $9 and Ω9, this probabil-
ity distribution can be translated to an absolute
frame of reference with simple rotations to give

P
(a,e)j
j,k [(i, $,Ω)j|(m9, a9, e9, i9)k, $9,Ω9]. (4)

4.3. Likelihood

With functions now specified for the probabil-
ity of detecting object j at (i, $,Ω)j and also for
the probability of detecting object j at (i, $,Ω)j
assuming a uniform distribution across the sky,
we can calculate our biased probability distribu-
tion for object j in simulation k, P ′j,k, by simple
multiplication:

P
′(a,e)j
j,k [(i, $,Ω)j|(m9, a9, e9, i9)k, $9,Ω9] =

Pj,k ×B
(a,e,H)j
j [(i, $,Ω)j|U ] (5)

where the arguments for Pj,k are omitted for
simplicity. We rewrite this probability as our
likelihood function in the form of Equation (2)
and take the product of the individual j like-
lihoods to form the overall likelihood for each
model k at the values of $9 and Ω9:

Lk[(m9, a9, e9, i9)k, $9,Ω9|X], (6)

1 https://healpix.jpl.nasa.gov/html/idl.htm

where X represents the full set of orbital ele-
ments of the distant KBOs from Table 2. The
likelihood is discretely sampled by the numeri-
cal models in the first four parameters and con-
tinuously sampled analytically in the two angu-
lar parameters.

The likelihoods sparsely sample a seven-
dimensional, highly-correlated parameter space.
With even a cursory examination of the like-
lihoods, however, several trends are apparent
(Figures 5 and 6). First, the model with the
maximum likelihood, M9 = 5 Mearth, a9 = 300
AU, i9 = 17◦, e9 = 0.15, $9 = 254◦, and
Ω9 = 108◦, is nearly a local peak in every di-
mension. Semimajor axes inside of ∼300 AU
lead to low likelihoods, but more distant Plan-
ets Nine are viable (particularly if they are more
massive), even if at reduced likelihood. The in-
clination appears quite well confined to regions
near 15◦, and strong peaks near $9 = 250◦ and
Ω9 = 100◦ are evident.

4.4. Gaussian process emulation

To further explore the orbital parameters,
their correlations, and their uncertainties,
we require a continuous, rather than dis-
cretely sampled, likelihood function. To esti-
mate this likelihood at an arbitrary value of
(m9, a9, i9, e9, $9,Ω9) we perform the following
steps. First, because the likelihoods as func-
tions of $9 and Ω9 are densely sampled for
each simulation, we perform a simple inter-
polation to obtain an estimated likelihood for
each simulation at the specific desired value
of $9 and Ω9. We next take the 121 simu-
lations with their now-interpolated likelihoods
and use these to create a computationally inex-
pensive Gaussian Process model as an emulator
for the likelihoods. The behaviour of the like-
lihoods is extremely asymmetric, in particular
in m9 and a9, with likelihood falling rapidly at
small values of m9 but dropping only slowly at
higher values. Likewise, the likelihoods change
rapidly for small values of a9, while changing
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Figure 5. One dimensional plots of the log(likelihood) values as function of semimajor axis (a9), inclination
(i9) and perihelion distance (q9), at the maximum likelihood in Ω9 and $9 for each simulation. The points
are colored by the mass of Planet Nine (m9) as shown in the legend. The one-dimensional plots show the
general behavior but do not show the significant correlations between parameters.
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Figure 6. The longitude of ascending node (Ω9)
and the longitude of perihelion ($9) at which the
maximum likelihood occurs in each of the simula-
tions. The points are colored by the mass of Planet
Nine (m9).

more slowly at higher a9. To better repre-
sent this behaviour, we rescale the variables
that we use in our Gaussian Process model-
ing. We use a′ = (a9/m9)

−0.5 and we replace
e9 with a similarly-scaled function of perihelion
distance, q′ = {a9 ∗ (1 − e9)/m9}−0.5. These
scalings cause the likelihoods to appear approx-
imately symmetric about their peak values and
to peak at similar values of a′ and q′ for all
masses (Figure 6). To enforce the smoothness
and symmetry in the Gaussian Process model,
we choose a Mateŕn kernel, which allows for a
freely adjustable smoothness parameter, ν. We
chose a value of ν = 1.5, corresponding to a
once-differentiable function, and which appears
to adequately reproduce the expected behavior
of our likelihood models. We force the length
scales of the Matérn kernel to be within the
bounds (0.5, 2.0), (0.02, 0.05), (1.0, 10.0), and
(1.0,100.0) for our 4 parameters and for units
of earth masses, AU, and degrees, correspond-
ing to the approximate correlation length scales
that we see in the likelihood simulations. We
multiply this kernel by a constant kernel and

also add a constant kernel. Beyond the domain
of the simulations we add artificial points with
low likelihood to prevent unsupported extrapo-
lation. The model is implemented using scikit-
learn in Python (Pedregosa et al. 2011).

The emulator produces a likelihood value at
arbitrary values of (M9, a9, i9, e9, $9,Ω9), and
appears to do a reasonable job of reproducing
the likelihoods of the numerical models, inter-
polating between these models, and smoothly
extending the models over the full range of inter-
est. Figure 7 gives an example of the correspon-
dence between individual measured likelihoods
and the emulator in the rescaled variable a′.
Viewed in the rescaled variables, the likelihoods
and the emulator are relatively regular, sym-
metric, and well-behaved. Similar results are
seen for i9 and q9. While the emulator does not
perfectly reproduce the simulation likelihoods,
the large-scale behavior is captured with suffi-
cient fidelity to allow us to use these results for
interpolation between the discrete simulations.

4.5. MCMC

We use this Gaussian Process emulator to pro-
duce a Markov Chain Monte Carlo (MCMC)
model of the mass and orbital parameters of
Planet Nine. We use the Python package em-
cee (Foreman-Mackey et al. 2013) which im-
plements the Goodman & Weare (2010) affine-
invariant MCMC ensemble sampler. We con-
sider two different priors for the semimajor axis
distribution. The Planet Nine hypothesis is
agnostic to a formation mechanism for Planet
Nine, thus a uniform prior in semimajor axis
seems appropriate. Nonetheless, different for-
mation mechanisms produce different semima-
jor axis distributions. Of the Planet Nine for-
mation mechanisms, ejection from the Jupiter-
Saturn region followed by cluster-induced peri-
helion raising is the most consistent with known
solar system constraints (Batygin et al. 2019).
In Batygin & Brown (2021) we consider this
process and find a distribution of expected semi-
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Figure 7. The discrete log(likelihoods) from the simulation versus the continuous results from the emulator.
Results from different values of m9 are shown as different colors and labeled in the legend. The top panel
shows the rescaled parameter a′ = (a9/m9)

−0.5. In this rescaled variable the likelihoods are approximately
symmetric and vary smoothly as a function of mass different masses. The lines show the output from the
Gaussian Process emulator with a fixed value of i9 = 15◦, maximum likelihood values of Ω9 and $9 and
an iterative search to find the maximum likelihood value for e9. The emulator result shown thus represents
the highest possible maximum likelihood at i9 = 15◦ for each value of a′ for each m9. The middle panel
shows emulator results versus inclination for the maximum likelihood values of all parameters, while the
bottom panel shows emulator results versus perihelion at a fixed inclination of i9 = 15◦ and maximum
likelihood values of the other parameters. In all cases, the emulator output follows the upper envelope of
the likelihoods, as expected.
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major axes that smoothly rises from about 300
AU to a peak at about 900 AU before slowly de-
clining. The distribution from these simulations
can be empirically fit by a Fréchet distribution
of the form p(a) = (a − µ)−(α+1) exp(−((a −
µ)/β)−α) with α = 1.2, β = 1570 AU, and
µ = −70 AU. We consider both this and the
uniform prior and discuss both below. Addi-
tionally, we assume priors of sin(i9) in inclina-
tion and e9 in eccentricity to account for phase-
space volume. Priors in the other parameters
are uniform. We sample parameter space using
100 separate chains (“walkers”) with which we
obtain 20890 samples each. We use the emcee
package to calculate the autocorrelation scales
of these chains and find that maximum is 130
steps, which is 160 times smaller than the length
of the chain, ensuring that the chains have con-
verged. We discard the initial 260 steps of each
chain as burn-in and sample each every 42 steps
to obtain 49100 uncorrelated samples.

Examining the two different choices of prior
for a9 we see that the posterior distributions of
the angular parameters, i9, Ω9, and $9, are un-
changed by this choice. The parameters m9, a9,
and e9 are, however, affected. This effect can
best be seen in the posterior distributions of a9
for the two different priors. The uniform prior
has 16th, 50th, and 84th percentile values of
a9 = 300, 380, and 520 AU (380+140

−80 AU) ver-
sus a9 = 360, 460, and 640 AU (460+180

−100 AU)
for the cluster scattering prior. While the two
posterior distributions agree within 1σ, the dif-
ferences are sufficiently large that predictions of
expected magnitude, for example, could be af-
fected. Here we will retain the uniform prior
for continued analysis, but we keep in mind be-
low the effects of a semimajor axis distribution
with values approximately 20% larger. For this
uniform prior, the marginalized perihelion and
aphelion distances of Planet Nine are 300+85

−60
and 460+200

−110 AU, respectively.

Figure 8 shows a corner plot illustrating the
full two-dimensional correlation between the
posterior distribution of pairs of parameters for
the cluster scattering prior in a9. We see the
clear expected correlations related to a9, m9,
and e9. No strong covariances exist between
the other parameters. The posterior distribu-
tions for i9 and Ω9 are among the most tightly
confined, suggesting that the data strongly con-
fine the pole position – and thus orbital path
through the sky – of Planet Nine.

Examination of Fig. 1 helps to explain why
low values of m9 and a9 are preferred. The mass
is directly related to the width of the cluster,
and masses greater than 6 Mearth lead to nar-
rower clusters than those observed. Likewise, a
low m9 planet requires a small semimajor axis
to have a distance to the wall of only ∼200 AU
as the data appear to support. It is possible,
of course, that the two KBOs with a ∼ 200 AU
are only coincidentally situated within the clus-
ter and the real wall, and thus a9 is more dis-
tant, but the likelihood analysis correctly ac-
counts for this possibility.

5. THE PREDICTED POSITION AND
BRIGHTNESS OF PLANET NINE

With distributions for the mass and orbital
elements of Planet Nine now estimated, we are
capable of determining the probability distribu-
tion of the on-sky location, the heliocentric dis-
tance, and the predicted brightness of Planet
Nine. We first use the full set of samples from
the MCMC to determine the probability distri-
bution function of the sky position and heliocen-
tric distance of Planet Nine. To do so we calcu-
late the heliocentric position of an object with
the orbital parameters of each MCMC sample at
one degrees spacings in mean anomaly, M9. The
sky density of these positions is shown in Fig-
ure 9. Appropriately normalized, this sky plane
density represents the probability distribution
function of finding Planet Nine at any heliocen-
tric position in the sky. Approximately 95% of
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Figure 8. A corner plot showing the histograms and covariances of the parameters. The dashed lines on
the histograms show the median and 16th and 84th percentiles of each marginalized distribution. The two
dimensional histograms include the 1, 2, and 3σ contour lines.

the probability is within a swath of the sky that
is ±12◦ in declination from an orbit with an in-
clination of 16◦ and an ascending node of97◦,
the median marginalized values of these param-
eters.

To estimate the magnitude of Planet Nine we
need not just the mass, but also the diameter
and the albedo, neither of which we directly con-
strain. We thus model what we consider to be
reasonable ranges for these parameters.

For masses between 4-20 Mearth we assume
that the most likely planetary composition is
that of a sub-Neptune, composed of an icy-
rocky core with a H-He rich envelope (we
discuss alternatives below). We assume a
simple mass-diameter relationship of r9 =
(m9/3Mearth) Rearth based on fits to (admittedly
much warmer) planets in this radius and mass
range by Wu & Lithwick (2013). The albedo
of such an object has been modeled by Fortney
et al. (2016), who find that all absorbers are
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Figure 9. The sky plane density, heliocentric distance, and predicted R magnitude for our Planet Nine
samples. The top panel is a Mollweide equal area projection centered at an RA of 180 and declination of 0.
Thick lines show the celestial equator, the ecliptic, and ±20◦ from the galactic plane. Thin lines show every
45◦ of RA and declination. The middle panel shows the probability distribution of heliocentric distance as
a function of RA. The lines show the 16th, 50th, and 84th percentiles of the distribution. The bottom panel
shows modeled R-band magnitudes again with the 16th, 50th, and 84th percentile distributions.The peak
in probability density at R.A.∼ 45 corresponds to the predicted aphelion position of P9 where an eccentric
object spends more of its time.
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condensed out of the atmosphere and the planet
should have a purely Rayleigh-scattering albedo
of ∼0.75. We conservatively assume a full range
of albedos from 0.2 – half that of Neptune –
to 0.75. With these diameters and albedos we
can use the modeled distances to determine the
brightness of Planet Nine for each of the sam-
ples. Figure 8 shows the predicted magnitudes
of Planet Nine. At the brightest end, Planet
Nine could already have been detected in mul-
tiple surveys, while at the faintest it will require
dedicated searches on 8-10 meter telescopes.

6. CAVEATS

Both the maximum likelihood and the fully
marginalized MCMC posterior distributions
suggest that Planet Nine might be closer and
potentially brighter than previously expected.
The original analysis of Batygin & Brown
(2016) was a simple proof-of-concept that an
inclined eccentric massive planet could cause
outer solar system clustering, so the choice of
m9=10 Mearth, e9=0.7, and i9 = 30◦ was merely
notional. Brown & Batygin (2016) showed that
a wide range of masses and semimajor axes were
acceptable with the constraints available at the
time, while Batygin et al. (2019) showed hints of
a preference for lower mass and semimajor axis.
As previously discussed, one of the strongest
drivers for the lower mass and semimajor axis
of Planet Nine is the width of the longitude of
perihelion cluster. With longitudes of perihelion
ranging from 7 to 118◦, this 111◦ wide cluster is
best matched by low masses, which necessitates
low semimajor axes to bring the wall in as close
as 200 AU.

One possibility for artificially widening the
longitude of perihelion cluster is contamination
by objects recently scattered into the 150 <
a < 1000 AU, q > 42 AU region. It is plau-
sible that 2013FT28, the major outlier outside
of the cluster, is one such recently Neptune-
scattered object. While integration of the or-
bit of 2013FT28 shows that it is currently

metastable, with a semimajor axis that diffuses
on ∼Gyr timescales, and while we attempted to
exclude all recent Neptune-scattered objects by
requiring q > 42 AU, we nonetheless note that
within the 200 Myr of our simulations ∼20% of
the objects that start as typical scattering ob-
jects with 30 < q < 36 AU and a < 150AU
have diffused to the q > 42 AU, a > 150
AU region. These diffusing objects are broadly
clustered around ∆$ ∼ 0◦ instead of around
∆$ ∼ 180◦ like the stable cluster. 2013FT28
is such a strong outlier, however, that whether
it is a contaminant from this route or not, its
presence has little affect on our final retrieved
orbital parameters. No Planet Nine simulations
are capable of bringing it into a region of high
likelihood.

A more worrisome possibility for inflating the
width of the longitude of perihelion clustering is
the scattering inward of objects from the inner
Oort cloud (Batygin & Brown 2021). As noted
earlier, we have no clear way to discriminate
against these objects, and while the most dis-
tant objects are more likely to have originated
from this exterior source, such objects can be
pulled down to small semimajor axes, too. We
have no understanding of the potential magni-
tude – if any – of this potential contaminating
source, so we assess the maximum magnitude
of the effect by systematically examining the
exclusion of objects from the data set. Lim-
iting the number of objects under consideration
will necessarily raise the uncertainties in the ex-
tracted parameters, but we instead here simply
look at how it changes the maximum likelihood
simulation.

We recalculate the maximum likelihood val-
ues of each simulation after exclusion of the ob-
ject most distant from the average $ position
of the cluster (with the exception of 2013FT29,
which we always retain). Even after excluding
the 6 most extreme objects in the cluster and re-
taining only 4, the maximum likelihood changes



20

only from m9 = 5 to m9 = 6 M⊕ and from
a9 = 300 to a9 = 310 AU. The orbital angles do
not change substantially.

We conclude that the preference for smaller
values of mass and semimajor axis is robust, and
that the orbital angles (i9,Ω9, $9) are largely
unaffected by any contamination. While the
posterior distributions for m9 and a9 have large
tails towards larger values, the possibility of a
closer brighter Planet Nine needs to be seriously
considered.

An additional uncertainty worth considering
is the diameter and albedo of Planet Nine. We
have assumed values appropriate for a gas-rich
sub-Neptune which, a priori, seems the most
likely state for such a distant body. Given our
overall ignorance of the range of possibilities in
the outer solar system, we cannot exclude the
possibility of an icy body resembling, for ex-
ample, a super-Eris. Such an icy/rocky body
could be ∼50% smaller than an equivalent sub-
Neptune in this mass range (Lopez & Fortney
2014), and while the large KBOs like Eris have
high albedos, much of this elevated albedo could
be driven by frost covering of darker irradiated
materials as the objects move through very dif-
ferent temperature regimes on very eccentric or-
bits. An object at the distance of Planet Nine
– which stays below the condensation tempera-
ture of most volatiles at all times – could well
lack such volatile recycling and could have an
albedo closer to the ∼10% of the large but not
volatile-covered KBOs (Brown 2008). Overall
the effect of a smaller diameter and smaller
albedo could make Planet Nine ∼ 3 magni-
tudes dimmer. Such a situation would make
the search for Planet Nine considerably more
difficult. While the possibility of a dark super-
Eris Planet Nine seems unlikely, it cannot be
excluded.

Finally, we recall the affect of the choice of
the prior on a9. A prior assuming formation in
a cluster would put Planet Nine more distant

than shown here, though it would also predict
higher masses. Combining those effects we find
that the magnitude distribution seen in Figure
8 would shift fainter by about a magnitude near
aphelion but would change little close to peri-
helion.

While all of these caveats affect the distance,
mass, and brightness of Planet Nine, they have
no affect on the sky plane position shown in
Figure 8. To a high level of confidence, Planet
Nine should be found along this delineated path.

7. CONCLUSION

We have presented the first estimate of Planet
Nine’s mass and orbital elements using a full
statistical treatment of the likelihood of detec-
tion of the 11 objects with 150 < a < 1000
AU and q > 42 AU as well as the observa-
tional biases associated with these detections.
We find that the median expected Planet Nine
semimajor axis is significantly closer than previ-
ously understood, though the range of potential
distances remains large. At its brightest pre-
dicted magnitude, Planet Nine could well be in
range of the large number of sky surveys being
performed with modest telescope, so we expect
that the current lack of detection suggests that
it is not as the brightest end of the distribution,
though few detailed analysis of these surveys
has yet been published.

Much of the predicted magnitude range of
Planet Nine is within the single-image detec-
tion limit of the LSST survey of the Vera Rubin
telescope, r ∼ 24.3, though the current survey
plan does not extend as far north as the full pre-
dicted path of Planet Nine. On the faint end of
the distribution, or if Planet Nine is unexpect-
edly small and dark, detection will still require
imaging with 10-m class telescopes or larger.

Despite recent discussions, statistical evidence
for clustering in the outer solar system remains
strong, and a massive planet on a distant in-
clined eccentric orbit remains the simplest hy-
pothesis. Detection of Planet Nine will usher in
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a new understanding of the outermost part of
our solar system and allow detailed study of a
fifth giant planet with mass common through-
out the galaxy.
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Table 2.

m9 a9 i9 e9 $9 Ω9 ` ∆` num.

(Mearth) (AU) (deg) (deg) (deg) particles

3 625 15 0.60 356 166 -182.1 -9.2 21100

4 230 10 0.15 250 108 -175.5 -2.6 30000

4 250 15 0.15 260 102 -175.3 -2.4 30000

4 500 20 0.33 224 86 -176.2 -3.3 120500

5 230 10 0.15 246 96 -174.3 -1.4 30000

5 250 5 0.15 250 126 -177.0 -4.1 30000

5 250 10 0.15 248 108 -174.4 -1.5 30000

5 260 15 0.10 246 94 -174.2 -1.3 25600

5 260 5 0.15 246 82 -177.0 -4.1 30000

5 280 10 0.10 246 96 -175.8 -2.9 25600

5 280 15 0.10 266 88 -175.0 -2.1 25600

5 300 10 0.15 234 108 -175.6 -2.7 25600

5 300 17 0.15 254 108 -172.9 0.0 25600

5 310 15 0.10 274 102 -175.1 -2.2 25600

5 356 17 0.20 252 88 -174.2 -1.3 25600

5 500 5 0.33 250 96 -179.2 -6.3 25600

5 500 10 0.33 244 86 -176.1 -3.2 25500

5 500 20 0.33 234 86 -176.2 -3.3 20200

5 720 20 0.65 234 96 -185.1 -12.2 30100

6 280 17 0.10 256 100 -173.2 -0.3 25500

6 290 17 0.15 250 108 -173.0 -0.0 25600

6 300 17 0.15 246 100 -173.4 -0.4 25600

6 310 10 0.10 252 96 -174.4 -1.5 25600

6 310 15 0.10 256 96 -174.6 -1.7 25600

6 310 17 0.10 244 108 -175.0 -2.1 25600

6 310 10 0.15 256 108 -173.0 -0.1 25600

6 310 15 0.15 252 116 -173.0 -0.1 25600

6 310 17 0.15 266 106 -173.5 -0.6 19900

6 310 5 0.20 244 108 -177.1 -4.2 25600

6 310 10 0.20 244 108 -173.9 -1.0 25000

6 310 15 0.20 252 92 -173.0 -0.0 25400

Table 2 continued
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Table 2 (continued)

m9 a9 i9 e9 $9 Ω9 ` ∆` num.

(Mearth) (AU) (deg) (deg) (deg) particles

6 310 17 0.20 260 122 -173.2 -0.3 13600

6 310 20 0.20 242 96 -173.2 -0.3 23700

6 310 25 0.20 230 92 -174.7 -1.8 20000

6 310 30 0.20 238 88 -178.0 -5.1 25500

6 330 10 0.20 248 108 -174.6 -1.7 31300

6 330 15 0.20 252 92 -173.4 -0.5 14400

6 356 20 0.10 254 100 -175.3 -2.4 25600

6 356 20 0.15 250 110 -174.2 -1.3 25600

6 356 15 0.20 256 102 -174.1 -1.2 21200

6 356 17 0.20 262 100 -174.1 -1.2 25600

6 356 17 0.20 264 108 -173.9 -1.0 25600

6 356 19 0.20 238 100 -173.9 -1.0 48500

6 356 25 0.20 228 88 -176.2 -3.3 40200

6 356 30 0.20 238 96 -179.9 -6.9 16700

6 380 17 0.20 242 110 -174.1 -1.2 25600

6 380 17 0.25 246 92 -173.3 -0.3 25600

6 500 35 0.15 242 96 -181.8 -8.9 30000

6 600 40 0.15 260 94 -184.0 -11.1 30000

6 800 50 0.15 242 82 -188.4 -15.5 30000

7 356 17 0.20 246 92 -173.8 -0.9 25600

7 400 15 0.25 254 82 -173.9 -1.0 30900

7 400 20 0.25 246 102 -175.2 -2.3 52800

7 400 30 0.25 230 88 -177.5 -4.6 30800

7 450 25 0.15 248 108 -178.7 -5.8 30000

7 450 15 0.33 250 86 -175.8 -2.8 29700

7 450 20 0.33 236 80 -175.9 -3.0 25600

7 450 25 0.33 236 80 -176.2 -3.3 23500

7 500 20 0.15 256 94 -176.3 -3.4 25600

7 500 15 0.20 256 102 -175.6 -2.7 25600

7 500 17 0.20 268 96 -175.1 -2.1 25600

7 500 25 0.20 254 92 -177.6 -4.7 25600

7 500 20 0.25 260 94 -176.8 -3.9 25600

7 500 5 0.33 242 96 -178.2 -5.2 57300

Table 2 continued
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Table 2 (continued)

m9 a9 i9 e9 $9 Ω9 ` ∆` num.

(Mearth) (AU) (deg) (deg) (deg) particles

7 500 10 0.33 252 92 -176.6 -3.7 41400

7 500 15 0.33 250 98 -175.5 -2.6 47700

7 500 17 0.33 250 100 -175.4 -2.5 17500

7 500 20 0.33 242 86 -176.1 -3.2 52400

7 500 25 0.33 234 86 -177.9 -5.0 54000

7 500 30 0.33 232 94 -179.0 -6.1 59600

7 500 35 0.33 230 86 -180.5 -7.6 41700

7 500 25 0.40 228 86 -179.7 -6.8 35000

7 500 25 0.45 226 74 -182.0 -9.0 27700

7 525 20 0.50 236 70 -179.6 -6.6 33000

7 550 17 0.40 244 88 -175.6 -2.6 25600

7 600 17 0.45 238 94 -174.9 -2.0 25600

7 640 17 0.50 240 102 -176.8 -3.9 16900

7 650 17 0.45 230 88 -174.6 -1.7 25500

7 800 50 0.15 310 50 -190.4 -17.5 30000

7 830 20 0.70 208 96 -184.7 -11.7 51200

7 1000 60 0.15 298 94 -191.2 -18.3 30000

8 400 20 0.15 248 108 -177.1 -4.2 30000

10 350 10 0.15 250 96 -176.3 -3.4 30000

10 400 20 0.15 242 84 -178.2 -5.3 30000

10 450 20 0.33 242 82 -177.8 -4.9 34300

10 525 20 0.15 264 106 -178.1 -5.2 30000

10 525 30 0.15 266 102 -184.6 -11.7 30000

10 525 40 0.15 304 138 -189.9 -17.0 30000

10 525 20 0.50 244 114 -180.8 -7.9 39700

10 525 20 0.65 242 90 -181.7 -8.8 20900

10 525 30 0.65 244 36 -187.1 -14.2 35600

10 700 20 0.35 244 108 -176.6 -3.7 25600

10 700 30 0.70 290 132 -190.0 -17.1 25600

10 750 10 0.35 234 106 -177.5 -4.6 19500

10 750 15 0.35 252 114 -176.1 -3.2 22400

10 750 20 0.35 244 100 -177.9 -5.0 25500

10 800 5 0.40 244 114 -177.5 -4.6 25600

Table 2 continued
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Table 2 (continued)

m9 a9 i9 e9 $9 Ω9 ` ∆` num.

(Mearth) (AU) (deg) (deg) (deg) particles

10 800 10 0.40 240 112 -177.0 -4.1 25600

10 800 15 0.40 240 118 -177.8 -4.9 25600

10 800 15 0.45 240 120 -174.9 -2.0 25600

10 800 20 0.45 238 108 -176.0 -3.1 28600

10 800 25 0.45 234 100 -177.6 -4.7 23500

10 800 30 0.45 242 50 -184.0 -11.1 16800

10 800 60 0.45 182 114 -183.0 -10.1 30400

10 870 20 0.73 254 92 -185.4 -12.5 17900

10 1000 60 0.15 314 96 -192.8 -19.9 23600

10 1400 70 0.15 224 30 -190.0 -17.1 30000

12 500 15 0.20 256 94 -178.4 -5.5 25600

12 500 20 0.20 256 92 -181.2 -8.3 25600

12 500 25 0.20 266 102 -182.9 -10.0 25600

12 920 20 0.73 224 76 -182.1 -9.1 25800

12 960 20 0.79 242 54 -186.8 -13.9 24900

14 960 20 0.74 220 76 -185.6 -12.7 28000

16 1000 20 0.75 248 76 -183.2 -10.2 33600

20 900 60 0.15 306 66 -189.0 -16.1 30000

20 1000 15 0.65 242 122 -179.6 -6.7 30100

20 1000 20 0.65 240 118 -180.6 -7.7 33000

20 1000 25 0.65 246 70 -185.5 -12.6 32300

20 1070 20 0.77 240 124 -185.2 -12.3 64900

20 1400 70 0.15 264 0 -186.8 -13.9 30000

20 2000 80 0.15 260 152 -190.1 -17.2 30000

Note—Parameters used in the numerical simulations on the effects of Planet Nine
(m9, a9, i9, e9) and the maximum ln(likelihood), `, which occurs at the listed
value of $9 and Ω9. ∆` gives the difference in ln(likelihood) from the maximum
value, which occurs at m9 = 5, a9 = 310, i9 = 15, and e9 = 0.10.
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